
Train Simulator External Interface API
Introduction
The	External	Interface	API	(EI	hereafter)	enables	external	applications	and	hardware	to	interact	with	
Train	Simulator	during	runtime,	both	to	find	out	what	is	happening	and	also	to	make	changes.	

The	primary	usage	of	this	API	is	to	enable	external	hardware	vendors	to	be	able	to	create	hardware	
with	gauges,	indicator	lights	and	panels	as	well	as	levers,	buttons	and	switches	to	provide	input.	

It	is	also	important	to	note	that	the	full	functionality	that	was	provided	originally	by	the	interface	is	
still	present	and	can	be	used.	

	

Access
For	legacy	compatibility	reasons,	the	filename	of	the	interface	is	“raildriver.dll”.		Import	this	in	to	
your	application	code	and	you	will	then	be	able	to	access	a	range	of	functions	that	will	use	the	DLL	
file	to	communicate	with	the	game	at	runtime.	

	

	

Applications
Lights
Trains	have	a	wide	range	of	lights	such	as	PZB	and	LZB	indicators,	Wheel	Slip	and	Sanding	indicators	
and	a	number	of	forms	of	cab	signalling.	

In	addition,	there	is	a	capability	to	determine	if	the	player	train	is	inside	a	tunnel,	this	could	be	used	
to	switch	off	the	lights	in	the	room	when	the	player	plunges	in	to	a	dark	tunnel,	adding	greatly	to	the	
immersion.		Further,	with	access	to	the	current	time	of	day,	applications	can	dim	or	brighten	room	
lights	automatically	for	the	time	of	day	of	the	scenario.	

Gauges
Most	trains	have	a	variety	of	fairly	standard	gauges	such	as	speedometer,	various	types	of	brake-
related	gauges,	fuel	levels,	ammeters,	rpm	counters	and	numerous	gauges	related	to	steam	
locomotives	such	as	boiler	pressure	and	steam	chest	pressure.	

Panels
Part	of	the	EI	allows	external	hardware	to	access	the	current	rotation	and	pitch	of	the	player	
locomotive	as	well	as	its	longitude	and	latitude	in	the	world.		This	information	could	be	used	to	plot	
a	path	via	an	external	system	such	as	Google	Earth.	

Levers
With	regulators,	reversers,	brakes	and	numerous	other	levers,	there	are	a	number	of	opportunities	
for	control	of	these	levers	with	external	hardware.	

Buttons
There	are	some	common	buttons	in	many	locomotives,	particularly	regional,	such	as	the	DSD	foot	
pedal,	AWS	Acknowledge	button,	SIFA	Acknowledge	button	and	the	three	PZB	buttons.		These	are	all	
great	candidates	for	being	exposed	via	external	hardware	and	allowing	a	much	more	responsive	feel.	

Switches
Lights	and	wipers	are	two	common	switches	but	there	are	many	more.	

	

	

API Function Reference
	

string GetLocoName()

This	function	returns	the	Provider,	Product	and	Engine	name	of	the	engine	being	driven	at	the	
moment.		This	is	in	the	form	“PROVIDER.:.PRODUCT.:.ENGINENAME”.		This	allows	application	
developers	to	accurately	determine	what	locomotive	is	being	driven	and	adapt	accordingly.	

	

string GetControllerList()

This	function	returns	a	list	of	every	controller	in	the	current	locomotive.		Each	one	is	separated	by	
two	colons	(::).		This	list	is	later	used	for	indexing	so	the	first	entry	in	this	list	should	be	considered	
controller	0	and	the	next	controller	1	etc.		This	is	something	like	
“Alerter::VirtualThrottle::Regulator::TrainBrake”	etc.		This	would	usually	be	the	same	list	as	seen	in	
the	Control	State	Dialog.	

	

float GetControllerValue(int controllerId, int getType)

This	function	queries	the	value	of	a	controller	and	returns	it.	

getType	should	be	0	to	get	the	current	value,	1	to	get	the	minimum	value	of	this	controller	and	2	to	
get	the	maximum	value	of	this	controller.	

It	is	important	to	use	the	controllerId	within	the	context	of	the	values	returned	by	GetControllerList	
as	it	cannot	be	assumed	that	a	particular	controller	is	always	at	the	same	ID	on	different	loco’s,	in	
fact	it	quite	often	won’t	be.	

	

void SetControllerValue(int controllerId, float value)

Set	the	new	current	value	of	the	controller	specified	to	the	value	provided.	

	

In	addition	to	the	controllers	that	are	returned	via	GetControllerList()	there	are	some	additional	
“virtual”	controllers	that	are	provided	by	the	EI	itself,	these	are:	

Controller	ID	 Purpose	
400	 Latitude	of	Train	
401	 Longitude	of	Train	
402	 Fuel	Level	
403	 Is	in	a	Tunnel?	
404	 Gradient	
405	 Heading	
406	 Time	of	day	hours	
407	 Time	of	day	minutes	
408	 Time	of	day	seconds	
	

	 	

Implementation Guide
It	is	expected	that	applications	will	frequently	call	GetLocoName	to	determine	if	the	locomotive	has	
changed.		If	it	does	change,	then	the	application	should	call	GetControllerList	and	then	determine	if	
it	needs	to	adjust	how	it’s	interacting	with	the	current	locomotive.	

If	the	application	is	trying	to	be	more	generic	in	how	it	interacts	with	different	types	of	locomotives,	
it	may	be	important	to	call	the	GetControllerValue	function	on	initialisation	to	request	the	Min	and	
Max	of	each	controller	that	the	application	might	want	to	set	–	this	would	then	allow	the	application	
to	scale	its	values	from	0	to	100%	accordingly,	rather	than	assuming	that	all	controls	are	perhaps	0.0	
to	1.0	(which	maybe	the	case	generally	but	will	leave	edge	cases	not	working).	

Operationally,	the	application	would	then	use	the	GetControllerValue	to	retrieve	values	and	
SetControllerValue	to	set	them.		Note	that	note	all	controllers	can	have	their	values	set	–	the	same	
rules	as	for	LUA	Engine	scripts	apply	(e.g.	you	can’t	set	the	boiler	pressure).		All	controls	can	be	read	
from.	

	

